
483

0022-4715/01/1100-0483$19.50/0 © 2001 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 105, Nos. 3/4, November 2001 (© 2001)

The Hydrodynamic Limit of a Deterministic Particle
System with Conservation of Mass and Momentum

Michael G. Mürmann1

1 Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 294,
D-69120 Heidelberg, Germany; e-mail: mmm@math.uni-heidelberg.de

Received June 25, 2000; revised April 25, 2001

We study the hydrodynamic limit of a deterministic one-dimensional particle
system with nearest neighbour interaction and an additional regularizing force.
Under its evolution mass and momentum are conserved. In the limit with Euler
scaling their macroscopic distributions are shown to be governed by the
compressible Navier–Stokes equations with a density dependent viscosity.
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1. INTRODUCTION

With the aim to deduce the equations of hydrodynamics from microscopic
dynamical systems, animated by the pioneering work of Guo, Papanicolaou
and Varadhan,(4) but even before, several models have been studied
rigorously. For a survey see Spohn(10) and Kipnis and Landim.(5) Most of
these models are stochastic evolutions, since the random noise weakens
the dependence on the initial conditions and provides good ergodic pro-
perties. Deterministic models were studied, e.g., by Mürmann(7, 8) and
Uchiyama.(11, 12) They illustrate, that in principle it is possible to deduce
hydrodynamic behaviour without the smoothing effect of noise. These
models have only one conserved quantity, the particle number resp. mass,
whose macroscopic dynamics under diffusive scaling is deduced, except for
the system of hard rods of Boldrighini, Dobrushin and Sukhov(1) with
Euler scaling and the opposite case of infinitely many conserved quantities,



in which velocities are transmitted and hence the number of particles with
particular values of the velocity is conserved.

A stochastic lattice system with conservation of mass and momentum
was studied by Esposito, Marra and Yau(3) and Quastel and Yau.(9) Its
dynamics consists of an exclusion process superimposed by collisions that
exchange velocities. They deduced the incompressible Navier–Stokes equa-
tions in the incompressible limit. These papers also contain a detailed
discussion of the problem to deduce the Navier–Stokes equations from
microscopic models.

In this paper we present a deterministic model, whose dynamics con-
serves mass and momentum. It is a one-dimensional system with nearest
neighbour interaction and an additional velocity dependent force, which
causes local equalization of velocities. It was stimulated by a similar model
of Uchiyama.(11, 12) In the hydrodynamic limit with Euler scaling we deduce
the compressible Navier–Stokes equations with a density dependent visco-
sity. We do not need to assume existence of solutions with given initial
conditions, but obtain them as a consequence of the construction. For lack
of uniqueness we cannot prove convergence, but the validity of the equa-
tion for any weak limit. Compactness results guarantee their existence.

Since the effect of the additional force tends to 0 with increasing dis-
tance of particles, we could not exclude a singular behaviour of the con-
vection term at points of vanishing density. See ref. 6 for problems of the
compressible Navier–Stokes equations at vacuum points. To avoid this we
assume, that initially the density is strictly positive. For this reason we treat
the system on the compact one-dimensional torus T. We derive the validity
of the compressible Navier–Stokes equations for the limit dynamics as long
as the density remains strictly positive, which holds on a non-degenerate
time interval. It is an open problem, whether the density of solutions with
strictly positive initial density remains strictly positive (see ref. 6).

Furthermore we need regularity assumptions on the positions of the
initial configurations, which also imply local equilibrium. We shall prove,
that it is preserved in time and that for a.e. (almost every) macroscopic
time local equilibrium holds for the velocities.

Though this model is quite different from the one we studied in refs. 7
and 8, some methods used there can be applied in modified form to this
model, too. We have the energy as a Lyapunov functional and a further
bounded functional resembling the energy decay in refs. 7 and 8. An essen-
tially new problem is the study of the distribution of the momentum.

The paper is organized as follows. In the next section we introduce the
model and formally deduce its limit dynamics. Then we derive inequalities
for the functionals mentioned above. They are the basic tools for the proof
of compactness in Section 4 and local equilibrium including regularity in
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Section 5. In the last section these results serve to deduce the limit dynamics
rigorously.

2. DESCRIPTION OF THE MODEL

We start from the classical one-dimensional Newtonian dynamics with
nearest neighbour interaction with respect to a repulsive pair-potential F.

dxi
dt

=vi (1 [ i [ N)

dvi
dt

=−F(xi+1 −xi)+F(xi −xi−1)= C
j: | j− i|=1

F(xi −xj)

with F=−FŒ and xi < xi+1 for 1 [ i [ N−1.
The following assumptions on F are the same as in ref. 8.

F: R0{0} Q R+

is twice continuously differentiable with the properties

1. symmetry: F(x)=F(−x) for x ] 0
2. convexity: there exists 0 < R [., such that F is strictly convex on

(0, R] and identically 0 on [R,.), if R <., resp. decreases to 0 as x Q.,
if R=..

3. singularity at 0:

(a) F(x) Q. as |x| Q 0
(b) there exists a, c > 0 such that |xFŒ(x)| [ aF(x)+c holds for

x ] 0.

Since F is convex, property 3b is equivalent, that F(x) [ b |x|−a holds in
a neighbourhood of 0 with a constant b > 0 (see, e.g., Dobrushin and
Fritz(2)).

The singularity at 0 causes the order of the particles to be preserved in
time, as can be shown by the boundedness of the energy (see Lemma 3.1).

We scale the microscopic space and time variables with Euler scaling,
i.e., for e > 0 we introduce the macroscopic positions

qi(t) :=exi(e−1t) (1 [ i [ N)

with the corresponding velocities

pi(t) :=
dqi(t)

dt
=vi(e−1t)
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We shall suppress the time variable from these and similar functions, unless
we need the dependence on it explicitly.

The macroscopic variables evolve according to the system of equations

dqi
dt

=pi

dpi
dt

=e−1 C
j: | j− i|=1

F 1qi −qj
e
2 (1 [ i [ N)

Even for this simplified form of classical dynamics an exact derivation of
hydrodynamic behaviour at present seems to be inaccessible. In order to
understand the transition from microscopic to macroscopic dynamics and
to develop methods for its treatment, more or less sophisticated modifica-
tions have been introduced, which one is able to study rigorously. In our
model we add a velocity dependent force, which resists the deviation of the
velocities of neighboured particles and thus causes, as we shall see, local
equalization of distances and velocities. This force is proportional to the
difference of the velocities with a strength, which increases with decreasing
distance of the particles with a singularity at 0 and vanishing at infinity.
Because of the proportionality to the difference of the velocities the
momentum is conserved. In the model of Uchiyama(11, 12) there is a similar
resistance, which is proportional to the velocity itself and independent of
the distances.

In the microscopic scale the effect of this force on the ith particle is
given by

− e−1 C
j: | j− i|=1

(vi −vj) q(xi −xj)

where q: R0{0} Q R+ is continuously differentiable with the properties

1. symmetry: q(x)=q(−x) for x ] 0

2. convexity: q is strictly convex on (0,.)

3. behaviour at 0 and .:

(a) there exist 0 < c [ C such that c
x2
[ q(x) [ C

x2
holds for x ] 0

(b) there exists b > 0, such that |xqŒ(x)| [ b |q(x)| holds for
x ] 0

The lower bound of 3a is more substantial. It makes the regularizing effect
sufficiently strong. The upper bound is needed to keep certain quantities
finite.
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From the remark to property 3 of F, applied to q, one can easily
conclude, that the upper bound of 3a implies 3b for bounded x with b
depending on the bound. So 3b is essentially an additional requirement for
large x. It holds, e.g., for q(x)= c

x2
.

An important consequence is the integrability at . and non-integra-
bility at 0.

As mentioned in the introduction we treat this model on the one-
dimensional torus T with length 1, whose elements we represent by real
numbers mod 1. In the sequel real numbers and intervals are always
understood in this sense. Likewise the particles are arranged on T in the
order q1, q2,..., qN, qN+1 with qN+1=q1.

Eventually we arrived at the final equations of the macroscopic
variables

dqi
dt

=pi (2.1a)

dpi
dt

=e−1 C
j: | j− i|=1

F 1qi −qj
e
2− e−2 C

j: | j− i|=1
(pi −pj) q 1

qi −qj
e
2 (2.1b)

Since the additional force even in the microscopic scale contains a scaling
parameter, the limit we are going to study is not really a scaling limit. This
is indeed impossible for a system with a Navier–Stokes limit dynamics,
which is not scaling invariant. This force seems to be of higher order of
magnitude as the classical force. But one can interpret its scaling as a
scaling of the difference of the velocities with e−1, and in local equilibrium
this force will turn out to be of finite order, too. Out of local equilibrium
however it should drive the system into local equilibrium. Unfortunately
we can only prove this for the velocities.

Since we assume, that on the microscopic scale the number of particles
in bounded intervals is of finite order, on the macroscopic scale it diverges
of order e−1. Therefore we scale the mass of the particles with e and repre-
sent the configurations by their following macroscopic distributions of
mass and momentum

r et :=e C
i
dqi (t)

n et :=e C
i

pi(t) dqi (t)

As we consider the system with finite macroscopic mass, N is of order e−1,
too. This normalization coincides with the empirical distributions up to a
factor of finite order.
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We study the evolution of these distributions by applying them to test
functions j ¥ C1, the space of continuously differentiable functions on T.
(2.1) becomes

d
dt

F j dr et=e C
i
jŒ(qi) pi=F jŒ dn et (2.2a)

d
dt

F j dn et=e C
i
jŒ(qi) p2i +e C

i
j(qi) e−1 C

j: | j− i|=1
F 1qi −qj

e
2

− e C
i
j(qi) e−2 C

j: | j− i|=1
(pi −pj) q 1

qi −qj
e
2

=e C
i
jŒ(qi) p2i +

e

2
C

i, j: | j− i|=1

j(qi)−j(qj)
e

F 1qi −qj
e
2

−
e

2
C

i, j: | j− i|=1

j(qi)−j(qj)
e

·
pi −pj
e
q 1qi −qj

e
2 (2.2b)

The transformations are valid due to the symmetry properties of F
and q. This representation indicates, that the effect of the classical force is
of finite order of magnitude. This also holds for the additional force in case
of local equilibrium, since then the difference of the velocities of neigh-
boured particles will be shown to be of order e.

Setting particularly j — 1 implies conservation of mass and momentum.
At the end of this section we want to deduce the limit dynamics in a

formal way. For it we assume, that r et and n
e
t have weak limits rt resp. nt

such that rt has a sufficiently smooth density, which we likewise denote
by rt, and nt has a sufficiently smooth density with respect to rt, which we
denote by ut. Then in the limit (2.2a) obviously becomes the continuity
equation

“

“t
rt(q)=−

“

“q
(rt(q) ut(q))

in a weak sense (see Eq. (6.1a) for the exact formulation).
For the determination of the limit of (2.2b) we study the terms on the

right-hand side separately. We assume local equilibrium, which means, that
the distances and velocities of the particles are locally constant. Then at
time t near q the microscopic distances xi+1 −xi=

qi+1 −qi
e are approximately

1
rt(q)

and the velocities ut(q). Concerning the second term this leads to
> jŒ(q) F( 1

rt(q)
) dq. The factor 1

rt(q)
cancels, since we have to integrate with
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respect to rt. As we assume the velocities to be locally constant, the
analogy to the variance of a random variable suggests, that in the limit the
density of the distribution of the square of the velocities with respect to rt
is the square of the density of the velocity distribution. So we obtain
> jŒ(q) rt(q) ut(q)2 dq for the first term. To determine the limit of the
third term we sum pi+1 −pi

e with qi ¥ [q, q+d). ut being sufficiently smooth,
pi+1 −pi
e is locally approximately 1

rt(q)
u −t(q) and the third term becomes

− > jŒ(q) 1
rt(q)

2 q( 1
rt(q)

) u −t(q) rt(q) dq.
We thus heuristically deduced the equation

“

“t
(rt(q) ut(q))

=−
“

“q
(rt(q) ut(q)2)−

“

“q
F 1 1
rt(q)
2+ “
“q
1 1
rt(q)

q 1 1
rt(q)
2 “
“q

ut(q)2

in a weak sense (see Eq. (6.1b)).
With the continuity equation these are the compressible Navier–Stokes

equations with pressure F(1r) and density dependent viscosity
1
r q(

1
r). In

virtue of property 3a of q the latter is of linear order in r. Since we treated
them on the torus, they can also be conceived as periodic solutions on R.

For a clearer representation of the equations of the limit dynamics we
deviate from our general notation and set r(t, q)=rt(q) and u(t, q)=
ut(q). Then the equations take the familiar form

“r

“t
=−

“

“q
(ru)

“

“t
(ru)=−

“

“q
(ru2)−

“

“q
p(r)+

“

“q
1m(r) “u

“q
2

with p(r)=F(1r) and m(r)=
1
r q(

1
r).

3. BASIC INEQUALITIES

In this section we introduce two important functionals of the configu-
ration. We show, that their boundedness is preserved in time, which is
fundamental for the following. The first is the energy defined by

E e :=e C
i

1p2i
2

+
1
2

C
j: | j− i|=1

F 1qi −qj
e
22
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By the equations of motion (2.1) its time derivative is

dEe(t)
dt

=e C
i

pi 5e−1 C
j: | j− i|=1

F 1qi −qj
e
2− e−2 C

j: | j− i|=1
(pi −pj) q 1

qi −qj
e
26

−
e

2
C

i, j: | j− i|=1
F 1qi −qj

e
2 · pi −pj

e

=−
e

2
C

i, j: | j− i|=1
q 1qi −qj

e
2 ·1pi −pj

e
22 [ 0

which yields

Lemma 3.1. E e(t) \ 0 is decreasing with

dE e(t)
dt

=−
e

2
C

i, j : | j− i|=1
q 1qi −qj

e
2 ·1pi −pj

e
22

In the sequel we occasionally understand

dE e

dt
=−

e

2
C

i, j: | j− i|=1
q 1qi −qj

e
2 ·1pi −pj

e
22

as a functional of the configuration, even if we consider it without reference
to time.

For the definition of the second functional we first introduce

X: R0{0} Q R

defined by

X(x) :=−F
.

x
q(y) dy for x > 0

with X(x)=−X(−x) for x < 0 such that XŒ(x)=q(x) holds for x ] 0.
−X has similar properties as F and will take its place in some estima-

tes of refs. 7 and 8. The second basic functional of the configuration is
defined by

X e :=e C
i

1 C
j: |j− i|−1

e−1X 1qi −qj
e
222

490 Mürmann



For its estimation we calculate the derivative

d
dt
5 C
i, j: | j− i|=1

X 1qi −qj
e
2 pi6

=e−1 C
i, j: | j− i|=1

q 1qi −qj
e
2 (pi −pj) pi

+ C
i, j: | j− i|=1

X 1qi −qj
e
2 C
k: |k−i|=1

5e−1F 1qi −qk
e
2− e−2(pi −pk) q 1

qi −qk
e
26

=
e

2
C

i, j: | j− i|=1
q 1qi −qj

e
2 1pi −pj

e
22

+e−1 C
i

51 C
j: | j− i|=1

X 1qi −qj
e
22 1 C

k: |k−i|=1
F 1qi −qk

e
226

−
d
dt
e

2
C
i

1 C
j: | j− i|=1

e−1X 1qi −qj
e
222

[ −1dEe

dt
+

1
2

dX e

dt
2

The inequality holds, since X and F are monotone on (0,.) in the opposite
sense.

It follows

dX e

dt
+2

dE e

dt
+2

d
dt
5 C
i, j: | j− i|=1

X 1qi −qj
e
2 pi6 [ 0

hence

X e(t)+2Ee(t)+2 5 C
i, j: | j− i|=1

X 1qi −qj
e
2 pi6

is decreasing.
With the inequality

: C
i, j: | j− i|=1

X 1qi −qj
e
2 pi : [ (X e)1/2 1 e C

i
p2i 2

1/2

[ (2EeX e)1/2
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we get for t > s

X e(t) [ X e(s)+2Ee(s)−2E e(t)+2`2[(E e(s) X e(s))1/2+(Ee(t) X e(t))1/2]

Since x [ a`x+b with x, a , b \ 0 implies x [ (a2+`
a2
4+b)2 [ a2+2b, we

obtain with simple estimations and the monotonicity of the energy the
following lemma.

Lemma 3.2. X e(t) [ (2+2`2) X e(s)+(8+2`2) E e(s) holds for
t > s \ 0.

4. COMPACTNESS

In this section we prove tightness of the distributions of mass and
momentum and convergence of subsequences for all times with weakly
continuous limits.

We assume, that for 0 < e [ e0 we are given initial configurations
(r e0, n

e
0), which evolve according to the Eqs. (2.2a, b). Since the space of the

position is compact, the tightness of the distribution of mass is equivalent
to the boundedness of the total mass, which is preserved in time. Besides
the tightness of the initial distributions of mass we need the boundedness of
the energy.

Theorem 4.1. If {E e(0): 0 < e [ e0} is bounded and {r e0: 0 < e [ e0}
is tight, then also {r et : 0 < e [ e0, t \ 0} and {n et : 0 < e [ e0, t \ 0} are tight.
For every sequence en Q 0 there exists a subsequence en(k), such that r

en(k)
t

and n en(k)t weakly converge for every t \ 0 as en(k) Q 0. The limit measures
{rt, t \ 0} are absolutely continuous with respect to the Lebesgue measure
and the limit signed measures {nt, t \ 0} are absolutely continuous with
respect to the corresponding measures {rt, t \ 0}. Both are weakly contin-
uous in t.

Proof. As remarked above the tightness of {r et : 0 < e [ e0, t \ 0} is
obvious. With the boundedness of the energy this would also hold in R (see
refs. 7 or 8) for compact time intervals.

Let E be an upper bound of the initial energy and hence of the energy
at every time and M be an upper bound of the total mass.

The tightness yields for a given sequence the weak convergence of a
subsequence at the times of a denumerable dense subset of [0,.). The
convergence for all times and the weak continuity follows from
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: d
dt

F j dr et :=:e C
i
jŒ(qi(t)) pi(t) :

[ 1 e C
i
jŒ(qi(t))22

1/2 1 e C
i

pi(t)22
1/2

[ (2ME)1/2 ||jŒ||

for j ¥ C1 with ||k|| :=sup{|k(q)| : q ¥ T} denoting the uniform norm.
The proof of the absolute continuity of the limit measures {rt, t \ 0}

in ref. 7 (Theorem 3.1) only uses the boundedness of the potential energy
and thus is valid here, too.

The tightness of {n et : 0 < e [ e0, t \ 0} follows from the tightness of
{r et : 0 < e [ e0, t \ 0} and

|n et | (C)=e C
i

1C(qi(t)) |pi(t)| [ 1 e C
i

1C(qi(t))2
1/2 1 e C

i
pi(t)22

1/2

[ (2Er et(C))1/2

This inequality also shows, that limit distributions of momentum are
absolutely continuous with respect to the corresponding distribution of
mass.

For the convergence for all times and the weak continuity we estimate
the terms of the right-hand side of (2.2b) separately.

:e C
i
jŒ(qi) p2i : [ 2E ||jŒ||

: e
2

C
i, j: | j− i|=1

j(qi)−j(qj)
e

F 1qi −qj
e
2:

[ ||jŒ||
e

2
C

i, j: | j− i|=1

:qi −qj
e

F 1qi −qj
e
2:

[ ||jŒ|| (aE+cM)

:e C
i, j: | j− i|=1

j(qi)−j(qj)
e

e−1piq 1
qi −qj
e
2:

=: e
2

C
i, j: |j− i|=1

j(qi)−j(qj)
e

·
pi −pj
e
q 1qi −qj

e
2:

[ ||jŒ||
e

2
C

i, j: | j− i|=1

:qi −qj
e
: · :pi −pj

e
: q 1qi −qj

e
2
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We do not estimate this term uniformly, but its integral, what is indeed
only needed.

F
t

r

e

2
C

i, j: | j− i|=1

:qi(s)−qj(s)
e
: · :pi(s)−pj(s)

e
: q 1qi(s)−qj(s)

e
2 ds

[ 1F t
r

e

2
C

i, j: | j− i|=1

1pi(s)−pj(s)
e
22 q 1qi(s)−qj(s)

e
2 ds2

1/2

×1F t
r

e

2
C

i, j: | j− i|=1

1qi(s)−qj(s)
e
22 q 1qi(s)−qj(s)

e
2 ds2

1/2

[ [EMC(t−r)]1/2

5. LOCAL EQUILIBRIUM

For the derivation of local equilibrium we consider time independent
configurations with r eQ r and n eQ n weakly as eQ 0. We shall identify
the measure r with its density and denote the density of n with respect to r
by u. In addition to the boundedness of the energy we need the bounded-
ness of {X e: 0 < e [ e0}.

The derivation of local equilibrium of the configuration of the posi-
tions can be proved the same way as in refs. 7 and 8. For a self-contained
presentation we briefly recapitulate the procedure and the needed results
adapted to the present model.

One first has to notice, that in refs. 7 and 8 the velocity vi is not an
independent variable, but a function of the configuration of the positions.
Recall further, that −X takes the place of F. This means that we replace vi
in refs. 7 and 8 by

− e−1 C
j: | j− i|=1

X 1qi −qj
e
2

and hence n e by

m e :=e C
i

1 − e−1 C
j: | j− i|=1

X 1qi −qj
e
22 dqi

An important inequality is the following (Lemma 2.3 of ref. 8).
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For every interval I=[a, b) and n, m with qn, qm ¥ I there holds

:X 1qn+1 −qn
e
2−X 1qm+1 −qm

e
2:2 [ r e(I) e C

i: qi ¥ I

1 C
j: | j− i|=1

e−1X 1qi −qj
e
222

(5.1)

This inequality first yields, that r is bounded.
With a suitable choice of qn and qm and a limit procedure one obtains

1
r(I)
:X 1 1

r(b)
2−X 1 1

r(a)
2:2 [ lim

eQ 0
e C
i: qi ¥ I

1 C
j: | j− i|=1

e−1X 1qi −qj
e
222

Obviously the left-hand side and similar expressions below have to be
interpreted as 0 in the case r(I)=0. The same holds analogously for func-
tions like 1r q(

1
r) at r=0.

The application of this inequality to disjoint intervals yields, that r can
be chosen such that X(1r) is an absolutely continuous function.

By replacing qm+1 −qme in (5.1) with their mean value one gets for qn ¥ I

:X 1qn+1 −qn
e
2−X 1 |I e|

r e(I)
2:2 [ r e(I) e C

i: qi ¥ I

1 C
j: | j− i|=1

e−1X 1qi −qj
e
222

(5.2)

where I e arises from I by slightly changing its boundary points to the posi-
tion of the respective next particle to the right. Without restriction one can
assume, that its length converges to that of I (see ref. 8) as eQ 0.

To determine the limit of m e we set

d e(q)=
qn+1 −qn
e

with n=n(q) such that qn < q [ qn+1 holds, hence

m e([a, b))=X(de(b))−X(de(a)) for a < b

With n=n(a) resp. n(b) and suited intervals in (5.2) one proves weak con-
vergence of m e to the signed measure with density “

“q X( 1
r(q)) with respect to

the Lebesgue measure. In contrast to ref. 8 there is a different force in the
second term of (2.2b) than in the definition of m e. But this additional diffi-
culty can easily be resolved. We set

m e :=e C
i

1 e−1 C
j: | j− i|=1

F 1qi −qj
e
22 dqi
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such that m e([a, b))=−F(de(b))+F(de(a)) holds. The continuous differ-
entiability of the inverse function of (−X) yields weak convergence of m e to
the signed measure with density − “

“q F( 1
r(q)) with respect to the Lebesgue

measure. In the same way r itself is shown to be an absolutely continuous
function.

We summarize the results.

Theorem 5.1. Let r eQ r weakly as eQ 0 with bounded {Ee: 0 <
e [ e0} and {X e: 0 < e [ e0}. Then the density r can be chosen such that r
is bounded and r and F(1r) are absolutely continuous functions. m

e weakly
converges to the signed measure with density − “

“q F( 1
r(q)) with respect to the

Lebesgue measure.

If these assumptions hold, we shall tacitly assume this version of r in
the sequel.

Next we prove, that the velocities are locally constant. For it we need
the boundedness of the time derivative of the energy.

The following lemma provides the basic inequality.

Lemma 5.2. For bounded {X e : 0 < e [ e0} there exist C̄ > 0 and
h > 0, such that for every interval I=[a, b) and e > 0 with r e(I) \ h |I e|2

1 e C
i: qi ¥ I

:pi+1 −pi
e
: 22

[ C̄r e(I) 5q 1 |I e|
r3(I)
26−1 e C

i: qi ¥ I

1pi+1 −pi
e
22 q 1qi+1 −qi

e
2

C̄ only depends on q, whereas h also depends on a bound of {X e : 0 <
e [ e0}.

Corollary 5.3. Under the assumptions of Lemma 5.2 there holds for
qn, qm ¥ I

|pn −pm |2 [ C̄r e(I) 5q 1 |I e|
r e(I)
26−1 e C

i: qi ¥ I

1pi+1 −pi
e
22 q 1qi+1 −qi

e
2

Proof. For simplicity we first treat the special case q(x)= 1
x2 with

X(x)=− 1
x .
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We start with the estimate

e C
i: qi ¥ I

:pi+1 −pi
e
: 1qi+1 −qi

e
2−1

[ 1 e C
i: qi ¥ I

12
1/2 1 e C

i: qi ¥ I

1pi+1 −pi
e
22 1qi+1 −qi

e
2−221/2

=(r e(I))1/2 1 e C
i: qi ¥ I

1pi+1 −pi
e
22 q 1qi+1 −qi

e
221/2

From (5.2) we get

1qi+1 −qi
e
2−1 \ r

e(I)
|I e|

− (r e(I) X)1/2 for qi ¥ I

where X is an upper bound of {X e : 0 < e [ e0}.
If r e(I) \ 4X |I e|2 holds, it follows (qi+1 −qie )−1 \ 1

2
r
e(I)

|Ie|
and hence

e C
i: qi ¥ I

:pi+1 −pi
e
: 1qi+1 −qi

e
2−1 \ 1

2
r e(I)
|I e|
e C
i: qi ¥ I

:pi+1 −pi
e
:

Combining this inequality with the first one, the lemma follows with
h=4X and C̄=4. For general q the inequalities can be traced back to the
special case by means of property 3a of q, which by integration yields cor-
responding estimates for X and its differences. The inequalities and conse-
quently h and C̄ then contain the constants c and C from property 3a of q.

The corollary easily follows from

|pn −pm |2 [ 1 e C
i: qi ¥ I

:pi+1 −pi
e
: 22

We shall apply Lemma 5.2 and Corollary 5.3 in the case, that ess inf r > 0,
which for continuous r is equivalent to r > 0. Then the condition of
Lemma 5.2 is satisfied for sufficiently small e and |I|. More precisely, let
r \ g > 0 and I be an interval with |I| [ g

3h . Then
r
e(I)

|Ie|
\
g

2 and |I e| [ g

2h hold
for e sufficiently small, which implies r e(I) \ h |I e|2. Evidently this also
holds, if r \ g only on I. In the sequel the assumption sufficiently small e
and |I| always refers to this.

We now derive local equilibrium of the velocities in the sense as stated
in the following lemma.
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Lemma 5.4. Let r eQ r weakly as eQ 0 with bounded {X e : 0 <
e [ e0} and {dE

e

dt : 0 < e [ e0} and ess inf r > 0. Then there converges for
partitions of T into disjoint subintervals Ik=[ak, bk) (1 [ k [ K) with
mean velocity pk=

n
e(Ik)
r
e(Ik)
in the interval Ik

lim
eQ 0

C
k
e C
i: qi ¥ Ik

|pi −pk |2Q 0 as sup
k

|Ik | Q 0.

Proof. Let I and e satisfy r e(I) \ h |I e|2. Replacing pm in Corol-
lary 5.3 with its mean

p̄=
e;i: qi ¥ I

pi
e;i: qi ¥ I

1
=
n e(I)
r e(I)

one gets for qn ¥ I

|pn −p̄|2 [ C̄r e(I) 5q 1 |I e|
r e(I)
26−1 e C

i: qi ¥ I

1pi+1 −pi
e
22 q 1qi+1 −qi

e
2

and hence

e C
i: qi ¥ I

|pi −p̄|2 [ C̄r e(I)2 5q 1 |I e|
r e(I)
26−1 e C

i: qi ¥ I

1pi+1 −pi
e
22 q 1qi+1 −qi

e
2

We decompose T into sufficiently small disjoint subintervals Ik=[ak, bk)
(1 [ k [ K) and apply the inequality to the subintervals for sufficiently
small e. With pk denoting the mean in the interval Ik it follows

C
k
e C
i: qi ¥ Ik

|pi −pk |2

[ C̄ C
k
r e(Ik)2 5q 1

|I ek |
r e(Ik)
26−1 e C

i: qi ¥ Ik

1pi+1 −pi
e
22 q 1qi+1 −qi

e
2

[ C̄ 1 −dE e

dt
2 sup

k

1r e(Ik)2 5q 1
|I ek |
r e(Ik)
26−12

We fix the partition and let eQ 0. Then

sup
k

1r e(Ik)2 5q 1
|I ek |
r e(Ik)
26−12Q sup

k

1r(Ik)2 5q 1
|Ik |
r(Ik)
26−12
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Now let sup
k

|Ik | Q 0. Then due to property 3a of q

sup
k

1r(Ik)2 5q 1
|Ik |
r(Ik)
26−12Q 0

finishing the proof of Lemma 5.4.
As a consequence of it we show, that for convergent n e the distribution

of the square of the velocities weakly converges to the measure with
density, which is the square of the corresponding density of the velocity
distribution, as described in the heuristic deduction of the limit dynamics.
For it we need the boundedness of the energy.

We denote this distribution by

o e :=e C
i

p2i dqi

We decompose an arbitrary interval I=[a, b) into sufficiently small
disjoint subintervals Ik=[ak, bk) (1 [ k [ K).

Since by definition of pk

C
i: qi ¥ Ik

(pi −pk )=0

we can represent

o e(Ik)=e C
i: qi ¥ Ik

pk 2+e C
i: qi ¥ Ik

(pi −pk )2=r e(Ik) pk 2+e C
i: qi ¥ Ik

(pi −pk )2

o e(I)=C
k
r e(Ik) 1

n e(Ik)
r e(Ik)
22+C

k
e C
i: qi ¥ Ik

(pi −pk )2

As eQ 0 the first term of the right-hand side converges to ;k r(Ik)(
n(Ik)
r(Ik)

)2.
From o e(I) [ 2E e we conclude ;k r(Ik)(

n(Ik)
r(Ik)

)2 [ 2E, if E is a bound of the
energy.

Finally let supk |Ik | Q 0. We determine the limit of ;k r(Ik)(
n(Ik)
r(Ik)

)2 by
considering the martingale with respect to the normalized restriction of r
to I, indexed by these partitions, which attributes to each partition the
function ;k

n(Ik)
r(Ik)

1Ik . By the inequality above it is bounded in L2 by 2E and
hence converges in L2. It follows

C
k
r(Ik) 1

n(Ik)
r(Ik)
22Q F

I
u(q)2 r(q) dq [ 2E.

The second term converges to 0 in the same sense by Lemma 5.4.
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Since the partitions are only auxiliary tools, on which o e(I) does not
depend, there easily follows the convergence o e(I) Q >1 u(q)2 r(q) dq as
eQ 0.

With I=T also > u(q)2 r(q) dq [ 2E <. holds.
We thus proved the following corollary.

Corollary 5.5. Let the assumptions of Lemma 5.4 be satisfied with
bounded {Ee : 0 < e [ e0} and let n e weakly converge to a signed measure
with density u with respect to r as eQ 0. Then the measures o e weakly
converge to the measure with density u2 with respect to r. Its total mass is
bounded by a bound of {2E e : 0 < e [ e0}.

Only for Lemma 5.4 and Corollary 5.5 we need the boundedness of r
from below. Without this assumption one could modify the proof and
derive the result on {r > 0} by proceeding as in the proof of the next
theorem. But this does not exclude the possibility, that in the limit o e has
singular parts on {r=0}.

It remains to derive smoothness of the density u. For it we additionally
need the smoothness properties of r from Theorem 5.1, hence we require
its assumptions.

Theorem 5.6. Let r eQ r and n eQ n weakly as eQ 0 with bounded
{Ee : 0 < e [ e0} and {X e : 0 < e [ e0} and finite limeQ 0(− dE e

dt ). Then the
density u of n with respect to r is r-a.e. differentiable with uŒ ¥ L2(r) and

F uŒ(q)2 1 1
r(q)
22 q 1 1

r(q)
2 r(q) dq [ C̄ lim

eQ 0

1 −dE e

dt
2

Remark 1. We did not simplify the left-hand side by reducing a
factor r in order to emphasize, that it is in fact an integral with respect to r
(see property 3a of q and the proof ). In particular the integral is well-
defined.

Remark 2. If we reconsider the time evolution of configurations in
the next section, the boundedness of the energy implies by Fatou’s Lemma,
that limeQ 0(− dE e(t)

dt ) is finite for a.e. t. In this way this assumption will be
satisfied.

Proof. Let I=[a, b) and e satisfy r e(I) \ h |I e|2 and let 0 < d < b−a
2 .

Assume without restriction

n e([a, a+d))
r e([a, a+d))

\
n e([b−d, b))
r3([b−d, b))

.
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Since n e([a, a+d))=e;i: qi ¥ [a, a+d)
pi, there exists qn ¥ [a, a+d) with

pn \
n e([a, a+d))
r e([a, a+d))

.

Equally there exists qm ¥ [b−d, b) with

pm [
n e([b−d, b))
r e([b−d, b))

.

Inserting this pn and pm into Corollary 5.3 yields

: n e([a, a+d))
r e([a, a+d))

−
n e([b−d, b))
r e([b−d, b))

:2 1
r e(I)

q 1 |I e|
r e(I)
2

[ C̄e C
i: qi ¥ I

1pi+1 −pi
e
22 q 1qi+1 −qi

e
2

We apply this inequality to sufficiently small disjoint intervals Ik=[ak, bk)
(1 [ k [ K) on which r \ g > 0 and sufficiently small e. It follows

C
k

: n e([ak, ak+d))
r e([ak, ak+d))

−
n e([bk −d, bk))
r e([bk −d, bk))

:2 1
r e(Ik)

q 1 |I ek |
r e(Ik)
2 [ −C̄

dE e

dt

With a sequence en Q 0 such that

1 −dE en

dt
2Q lim

eQ 0

1 −dE e

dt
2

we get

C
k

: n([ak, ak+d))
r([ak, ak+d))

−
n([bk −d, bk))
r([bk −d, bk))

:2 1
r(Ik)

q 1 |Ik |
r(Ik)
2 [ C̄ lim

eQ 0

1 −dEe

dt
2

Since n is absolutely continuous with respect to r with density u,

n([q, q+d))
r([q, q+d))

Q u(q)
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for r-a.e. q as dQ 0 and it follows for such intervals Ik=[ak, bk) for r-a.e.
ak, bk

C
k

|u(bk)−u(ak)|2
1
r(Ik)

q 1 |Ik |
r(Ik)
2 [ C̄ lim

eQ 0

1 −dE e

dt
2 (5.3)

Recall that we choose the absolutely continuous version of r. For fixed
q ¥ T with r(q) > 0 there exists an interval I=[a, b) with a < q < b and
g > 0 such that r \ g on I. Then (5.3) holds for sufficiently small disjoint
subintervals of I yielding

C
k

|u(bk)−u(ak)|

[ 1C
k

|u(bk)−u(ak)|2
1
r(Ik)

q 1 |Ik |
r(Ik)
221/2 1C

k
r(Ik) 5q 1

|Ik |
r(Ik)
26−121/2

[ 1 C̄ lim
eQ 0

1 −dEe

dt
221/2 q 11

g
2−1/2 1C

k
r(Ik)2

1/2

Since r is absolutely continuous with respect to the Lebesgue measure, it
follows, that u restricted to I is an absolutely continuous function and
hence differentiable a.e. with respect to the Lebesgue measure. By the
choice of I the last property extends to {r > 0}, so u is r-a.e. differentiable.

For the proof of the inequality we fix g > 0. There exists a finite cover
of the compact set {r \ 2g} with open intervals of length [ g

3h and bound-
ary points outside the null set of (5.3), on which r > g. By adding their left
boundary points we obtain a finite cover of {r \ 2g} with disjoint intervals
Ik=[ak, bk) (1 [ k [ K), on which r \ g. These intervals satisfy the condi-
tions for (5.3). We represent its left-hand side as

C
k

:u(bk)−u(ak)
bk −ak
:2 1 |Ik |
r(Ik)
22 q1 |Ik |

r(Ik)
2 r(Ik),

which is the integral of the function

C
k

:u(bk)−u(ak)
bk −ak
:2 1 |Ik |
r(Ik)
22 q 1 |Ik |

r(Ik)
2 1Ik

with respect to r over the union of the Ik=[ak, bk).
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Let supk |Ik | Q 0 along a sequence of partitions.
Then

C
k

:u(bk)−u(ak)
bk −ak
:2 1 |Ik |
r(Ik)
22 q 1 |Ik |

r(Ik)
2 1Ik Q u −2 1 1

r
22 q 1 1

r
2 r-a.e.

on {r \ 2g} and it follows with (5.3) and Fatou’s lemma

F
{r \ 2g}

uŒ(q)2 1 1
r(q)
22 q 1 1

r(q)
2 r(q) dq [ C̄ lim

eQ 0

1 −dEe

dt
2

Since we integrate with respect to r, the inequality of Theorem 5.6 follows
with g a 0. The lower bound of property 3a of q finally yields uŒ ¥ L2(r).

6. THE LIMIT DYNAMICS

In the preceding section we deduced the limit behaviour of configura-
tions without reference to time. Let us now return to the dynamics (2.2a, b)
and apply these results to the configurations at fixed times. We prove, that
under suitable conditions of the initial configurations any weak limit solves
the compressible Navier–Stokes equations formally deduced in Section 2 in
a time interval, on which the density is strictly positive. For convergent
initial configurations convergence to a solution holds for subsequences.

We first make the following assumptions

r et Q rt and n et Q nt weakly for all t \ 0 as eQ 0

{Ee(0) : 0 < e [ e0} and {X e(0) : 0 < e [ e0} are bounded.

By Lemmas 3.1 and 3.2 these quantities are uniformly bounded for times
t \ 0. Concerning the boundedness of the energy, its assumption is usual
and not too restrictive. But the results in Section 5 show, that the boun-
dedness of {X e(0): 0 < e [ e0} can only be satisfied, if the positions and the
limit density are already initially quite regular. The initial configurations of
the velocities however are only restricted by the boundedness of the kinetic
energy. Their local equalization then follows for a.e. time from the boun-
dedness of the time derivative of the energy.

According to our notation we identify rt with its density and denote
the density of nt with respect to rt by ut.

Let 0 < T [. to be determined later. For 0 < t < T we integrate the
Eqs. (2.2a, b) over the interval [0, t] and let eQ 0.
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Since for Eq. (2.2a) the integrand is uniformly bounded in e (see Sec-
tion 4), we are allowed to permute the limit with the integral and obtain the
continuity equation

F j(q) rt(q) dq=F j(q) r0(q) dq+F
t

0

5F jŒ(q) us(q) rs(q) dq6 ds (6.1a)

For the treatment of (2.2b) we assume, that r0 > 0. Then there exists y > 0,
such that rt > 0 for 0 [ t < y. To show this, let r0 \ g > 0 and X be an
upper bound of {X e(t): 0 < e [ e0, t \ 0}. Then

−X 1 |I|
r0(I)
2 \ −X 11

g
2

holds for every interval I and we can divide T into disjoint intervals
Ik=[ak, bk) (1 [ k [ K) with

−X 1 |Ik |
r0(Ik)
2−(Xr0(Ik))1/2 \ −

1
2

X 11
g
2

for 1 [ k [ K. By weak continuity of rt there exists y > 0 with

−X 1 |Ik |
rs(Ik)
2−(Xrs(Ik))1/2 \ −

1
4

X 11
g
2

for 0 [ s [ y. Finally (5.2) with eQ 0 implies

−X 1 1
rs(q)
2 \ −

1
4

X 11
g
2

for q ¥ T, hence inf0 [ s [ y rs > 0. By the same argument applied to t with
rt > 0 there exists a neighbourhood of t, in which rs is bounded from
below by a strictly positive constant. Compactness yields it for 0 [ s [
t < T, if rt > 0 for 0 [ t < T. In the sequel we suppose T to have this prop-
erty.

We treat the terms of the right-hand side of (2.2b) separately.
Let j ¥ C1. For a fixed time 0 [ s [ t the first term converges by

Corollary 5.5 to

F jŒ(q) us(q)2 rs(q) dq
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Again by uniform boundedness we permute the limit with the integral and
get

F
t

0

5F jŒ(q) us(q)2 rs(q) dq6 ds

The second term converges by Theorem 5.1 to

−F j(q)
“

“q
F 1 1
rs(q)
2 dq=F jŒ(q) F 1 1

rs(q)
2 dq

The same reasoning as for the first term leads to

F
t

0

5F jŒ(q) F 1 1
rs(q)
2 dq6 ds

The third term is more difficult to handle. We represent it as

− e C
i

j(qi+1)−j(qi)
e

·
pi+1 −pi
e

q 1qi+1 −qi
e
2

=−e C
i
jŒ(qi6)

qi+1 −qi
e

·
pi+1 −pi
e

q 1qi+1 −qi
e
2

with qi < qi6< qi+1.
Let Ik=[ak, bk) (1 [ k [ K) be a partition of T into disjoint subinter-

vals with an arbitrary choice qk ¥ Ik. Then

− e C
i
jŒ(qi6)

qi+1 −qi
e

·
pi+1 −pi
e

q 1qi+1 −qi
e
2 (6.2)

=−e C
k

C
i: qi ¥ Ik

(jŒ(qi6)−jŒ(qk ))
qi+1 −qi
e

q 1qi+1 −qi
e
2 pi+1 −pi

e

− e C
k
jŒ(qk ) C

i: qi ¥ Ik

5qi+1 −qi
e

q 1qi+1 −qi
e
2− |I ek |
r e(Ik)

q 1 |I ek |
r e(Ik)
26 pi+1 −pi

e

−C
k
jŒ(qk )

|I ek |
r e(Ik)

q 1 |I ek |
r e(Ik)
2 5e C

i: qi ¥ Ik

pi+1 −pi
e
6

We first show, that the integral of the first two terms of the right-hand side
over [0, t] tend to 0 as eQ 0 followed by supk |Ik | Q 0.
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With the modulus of continuity w(d)=sup{|jŒ(q1)−jŒ(q2)|: |q1 −q2 |
[ d} of jŒ the absolute value of the first term is bounded by

w(sup
k

|Ik |) e C
k

C
i: qi ¥ Ik

:qi+1 −qi
e
: · :pi+1 −pi

e
: q 1qi+1 −qi

e
2

Since the integral of

e C
k

C
i: qi ¥ Ik

:qi+1 −qi
e
: · :pi+1 −pi

e
: q 1qi+1 −qi

e
2

over [0, t] is bounded by the last inequality in Section 4, the asserted con-
vergence of the first term of (6.2) follows.

For the treatment of the second term we consider the function
g(x) :=xq(x) for x ] 0. From gŒ(x)=xqŒ(x)+q(x) and property 3b of q it
follows | g

−

X − |=| g
−

q | [ b+1 and hence

:qi+1 −qi
e

q 1qi+1 −qi
e
2− |I ek |
r e(Ik)

q 1 |I ek |
r e(Ik)
2:

[ (b+1) :X 1 qi+1 −qi
e
2−X 1 |I ek |

r e(Ik)
2:

In the sequel we assume, that the subintervals and e are sufficiently small,
that we can apply Lemma 5.2. By the uniform boundedness of the density
from below this is simultaneously possible for 0 [ s [ t. Then we can esti-
mate the absolute value of the second term of (6.2) up to a constant factor
by

e C
k

C
i: qi ¥ Ik

:X 1qi+1 −qi
e
2−X 1 |I ek |

r e(Ik)
2: · :pi+1 −pi

e
:

[ e C
k

5 C
i: qi ¥ Ik

:pi+1 −pi
e
:6 ·5r e(Ik) e C

l: ql ¥ Ik

1 C
j: | j− l|=1

e−1X 1ql −qj
e
22261/2

[ 5C
k
e C
i: qi ¥ Ik

1 C
j: | j− i|=1

e−1X 1qi −qj
e
22261/2

×5C
k
r e(Ik) 1 e C

i: qi ¥ Ik

:pi+1 −pi
e
: 2261/2

[ c−1/2C̄(X e)1/2 1 −dE e

dt
21/2 (sup

k
|Ik |)
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The first inequality holds by (5.2) and the last by Lemma 5.2 with the lower
bound of property 3a of q. If we integrate over [0, t] and apply Cauchy’s
inequality to the integral, we obtain with Lemma 3.2 the upper bound

c−1/2C̄[((2+2`2) X e(0)+(8+2`2) E e(0)) E e(0) t]1/2 (sup
k

|Ik |)

which implies the convergence of the second term of (6.2).
It remains to determine the limit of the decisive third term.
From the convergence

n([q, q+d))
r([q, q+d))

Q u(q) for r-a.e. q

as dQ 0 and Corollary 5.3 applied to [q, q+d) with pm replaced by p̄ as in
the proof of Lemma 5.4 one can easily conclude, that as eQ 0 for r-a.e.
ak, bk (1 [ k [ K)

e C
i: qi ¥ Ik

pi+1 −pi
e

Q u(bk)−u(ak)

−C
k
jŒ(qk )

|I ek |
r e(Ik)

q 1 |I ek |
r e(Ik)
2 1 e C

i: qi ¥ Ik

pi+1 −pi
e
2

Q −C
k
jŒ(qk )

|Ik |
r(Ik)

q 1 |Ik |
r(Ik)
2(u(bk)−u(ak))

Recall, that in general we suppress the time variable. One has to notice here
however, that the choice of the ak, bk depends on time. Since these func-
tions appear in dependence on time only as integrands, we choose ak, bk
such that the times, for which the convergence does not hold, has Lebesgue
measure 0. This choice is justified by regarding the measure obtained by
integrating rs with respect to the Lebesgue measure.

To permute the limit with the integral over [0, t] we show, that

−C
k
jŒ(qk )

|I ek |
r e(Ik)

q 1 |I ek |
r e(Ik)
2 1 e C

i: qi ¥ Ik

pi+1 −pi
e
2

is uniformly L2-bounded and therefore uniformly integrable. This follows
from the estimate, again with Lemma 5.2
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1C
k

|I ek |
r e(Ik)

q 1 |I ek |
r e(Ik)
2 :e C

i: qi ¥ Ik

pi+1 −pi
e
: 22

[ 1C
k

5C̄ |I ek |
2

r e(Ik)
q 1 |I ek |
r e(Ik)
2 e C

i: qi ¥ Ik

1pi+1 −pi
e
22 q 1qi+1 −qi

e
261/222

[ C̄ 5C
k

|I ek |
2

r e(Ik)
q 1 |I ek |
r e(Ik)
26 1 −dE e

dt
2

[ CC̄ 1C
k
r e(Ik)2 1 −

dE e

dt
2 [ CC̄M 1 −dEe

dt
2

Its integral is bounded by CC̄ME, if E is an upper bound of the energy.
Now let supk |Ik | Q 0 along sequences.

For fixed s we represent

−C
k
jŒ(qk )

|Ik |
rs(Ik)

q 1 |Ik |
rs(Ik)
2 (us(bk)−us(ak))

as the integral of the function

−C
k
jŒ(qk ) 1

|Ik |
rs(Ik)
22 q 1 |Ik |

rs(Ik)
2 1us(bk)−us(ak)

bk −ak
2 1Ik

with respect to rs.
From Theorem 5.6 (see Remark 2) follows the convergence

−C
k
jŒ(qk ) 1

|Ik |
rs(Ik)
22 q 1 |Ik |

rs(Ik)
2 1us(bk)−us(ak)

bk −ak
2 1Ik

Q −j − ·1 1
rs
22 q 1 1

rs
2 u −s

a.e. with respect to rs integrated with respect to the Lebesgue measure on
[0, t]. We show, that the corresponding integrals converge.

For this purpose we prove again uniform L2-boundedness. The integral
of the square of

−C
k
jŒ(qk ) 1

|Ik |
rs(Ik)
22 q 1 |Ik |

rs(Ik)
2 1us(bk)−us(ak)

bk −ak
2 1Ik

with respect to rs is up to a constant factor bounded by the left-hand side
of (5.3) (use property 3a of q), whose integral over [0, t] is uniformly
bounded due to the right-hand side of (5.3).
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We finally proved, that the integral of the third term of (2.2b) over
[0, t] converges as eQ 0 to

−F
t

0

5F jŒ(q) 1 1
rs(q)
22 q 1 1

rs(q)
2 u −s(q) rs(q) dq6 ds

With the obvious limit of the integral of the left-hand side of (2.2b) we
obtain the second equation of the limit dynamics, to which we recall (6.1a)
for a joint presentation.

F j(q) rt(q) dq=F j(q) r0(q) dq+F
t

0

5F jŒ(q) us(q) rs(q) dq6 ds (6.1a)

F j(q) ut(q) rt(q) dq−F j(q) u0(q) r0(q) dq

=F
t

0

5F jŒ(q) 1rs(q) us(q)2+F 1 1
rs(q)
2− 1
rs(q)

q 1 1
rs(q)
2 u −s(q)2 dq6 ds

(6.1b)

Here we effected the simplification corresponding to Remark 1 to
Theorem 5.1.

We finally proved

Theorem 6.1. Let r et Q rt and n
e
t Q nt weakly for t \ 0 as eQ 0 with

bounded {E e(0): 0 < e [ e0} and {X e(0): 0 < e [ e0} and r0 > 0. Then there
exists 0 < T [. with rt > 0 for 0 [ t < T. Denoting the density of nt with
respect to rt by ut the limit distributions satisfy the equations

“

“t
rt(q)=−

“

“q
(rt(q) ut(q))

“

“t
(rt(q) ut(q))=−

“

“q
(rt(q) ut(q)2)−

“

“q
F 1 1
rt(q)
2

+
“

“q
1 1
rt(q)

q 1 1
rt(q)
2 “
“q

ut(q)2

in the weak sense (6.1a, b) on the interval [0, T).

For a concise representation of the equations recall the form at the
end of Section 2.
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Theorem 6.1 signifies, that under the quoted conditions any limit
dynamics solves the Eqs. (6.1a, b). For the proof of a limit theorem, which
only assumes convergence and suitable boundedness conditions of the initial
configurations, one needs the unique solvability of (6.1a, b) with given initial
conditions. Then it would easily follow from Theorem 6.1 by means of
Theorem 4.1. For lack of uniqueness these results at least yield convergence
of subsequences to the limit dynamics, as stated in the last theorem.

Theorem 6.2. Let r en0 Q r0 and n
en
0 Q n0 weakly as en Q 0 with

bounded {Een(0): n \ 1} and {X en(0): n \ 1} and r0 > 0. Then there exists a
subsequence en(k), such that r

en(k)
t and n en(k)t weakly converge for every t \ 0.

The limit distributions (rt, nt) satisfy the equations stated in Theorem 6.1
with initial conditions (r0, n0) on the interval [0, T) with 0 < T [., on
which rt > 0.
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